Package index
-
adfit()
- Constructor for the "adfit" (A-D fit) class
-
as.data.frame(<adfit>)
- Convert object of class adfit to data.frame. Calls
extract_samples
-
as.tmbfit()
- Construtor for tmbfit objects
-
benchmark_metrics()
- Calculate gradient timings on a model for different metrics
-
check_identifiable()
- Check identifiability from model Hessian
-
.check_ADMB_version()
- Check that the model is compiled with the right version of ADMB which is 12.0 or later
-
.check_console_printing()
- Check if the session is interactive or Rstudio which has implications for parallel output
-
.check_model_path()
- Check that the file can be found
-
.getADMBHessian()
- Read in admodel.hes file
-
.get_inits()
- Get a single initial value vector in untransformed model space
-
.get_inputs()
- Prepare inputs for sparse sampling
-
.get_Q()
- Get the joint precision matrix Q from an optimized TMB or RTMB obj.
-
.get_Qinv()
- Get the joint covariance Sigma from an optimized TMB or RTMB obj without random effects.
-
.make_unique_names()
- Function to take a character vector of parameter names and force them to be unique by appending numbers in square brackets as needed
-
.print.mat.stats()
- Print matrix stats
-
.rotate_posterior()
- Update algorithm for mass matrix.
-
.rotate_space()
- Update algorithm for mass matrix.
-
.sample_admb()
- Hidden wrapper function for sampling from ADMB models
-
.update_model()
- Convert model name depending on system
-
extract_sampler_params()
- Extract sampler parameters from a fit.
-
extract_samples()
- Extract posterior samples from a model fit.
-
get_post()
- Extract posterior samples from a tmbfit object
-
is.adfit()
- Check object of class adfit
-
launch_shinyadmb()
- Launch shinystan for an ADMB fit.
-
launch_shinytmb()
- Launch shinystan for a TMB fit.
-
pairs(<adfit>)
- Plot pairwise parameter posteriors and optionally the MLE points and confidence ellipses.
-
pairs_admb()
- Deprecated function to make custom pairs plots for 'adfit' objects. Use S3 class method 'pairs' instead, and see
?pairs.adfit
for help.
-
plot(<adfit>)
- Plot object of class adfit
-
plot_marginals()
- Plot marginal distributions for a fitted model
-
plot_Q()
- Make an image plot showing the correlation (lower triangle) and sparsity (upper triangle).
-
plot_sampler_params()
- Plot adaptation metrics for a fitted model.
-
plot_uncertainties()
- Plot MLE vs MCMC marginal standard deviations for each parameter
-
print(<adfit>)
- Print summary of adfit object
-
sample_admb()
- Deprecated version of wrapper function. Use sample_nuts or sample_rwm instead.
-
sample_inits()
- Function to generate random initial values from a previous fit using adnuts
-
sample_snuts()
- NUTS sampling for TMB models using a sparse metric (BETA).
-
sample_sparse_tmb()
- Deprecated version of sample_snuts
-
sample_tmb()
- Bayesian inference of a TMB model using the no-U-turn sampler.
-
sample_tmb_hmc()
- Draw MCMC samples from a model posterior using a static HMC sampler.
-
sample_tmb_nuts()
- Draw MCMC samples from a model posterior using the No-U-Turn (NUTS) sampler with dual averaging.
-
sample_tmb_rwm()
- [Deprecated] Draw MCMC samples from a model posterior using a Random Walk Metropolis (RWM) sampler.
-
summary(<adfit>)
- Print summary of object of class adfit
-
sample_nuts()
sample_rwm()
- Bayesian inference of an ADMB model using the no-U-turn sampler (NUTS) or random walk Metropolis (RWM) algorithms.