Package index
-
adfit() - Constructor for the "adfit" (A-D fit) class
-
as.data.frame(<adfit>) - Convert object of class adfit to data.frame. Calls
extract_samples
-
as.tmbfit() - Construtor for tmbfit objects
-
benchmark_metrics() - Calculate gradient timings on a model for different metrics
-
check_identifiable() - Check identifiability from model Hessian
-
.check_ADMB_version() - Check that the model is compiled with the right version of ADMB which is 12.0 or later
-
.check_console_printing() - Check if the session is interactive or Rstudio which has implications for parallel output
-
.check_model_path() - Check that the file can be found
-
.getADMBHessian() - Read in admodel.hes file
-
.get_inits() - Get a single initial value vector in untransformed model space
-
.get_inputs() - Prepare inputs for sparse sampling
-
.get_Q() - Get the joint precision matrix Q from an optimized TMB or RTMB obj.
-
.get_Qinv() - Get the joint covariance Sigma from an optimized TMB or RTMB obj without random effects.
-
.make_unique_names() - Function to take a character vector of parameter names and force them to be unique by appending numbers in square brackets as needed
-
.print.mat.stats() - Print matrix stats
-
.rotate_posterior() - Update algorithm for mass matrix.
-
.rotate_space() - Update algorithm for mass matrix.
-
.sample_admb() - Hidden wrapper function for sampling from ADMB models
-
.update_model() - Convert model name depending on system
-
extract_sampler_params() - Extract sampler parameters from a fit.
-
extract_samples() - Extract posterior samples from a model fit.
-
get_post() - Extract posterior samples from a tmbfit object
-
is.adfit() - Check object of class adfit
-
launch_shinyadmb() - Launch shinystan for an ADMB fit.
-
launch_shinytmb() - Launch shinystan for a TMB fit.
-
pairs(<adfit>) - Plot pairwise parameter posteriors and optionally the MLE points and confidence ellipses.
-
pairs_admb() - Deprecated function to make custom pairs plots for 'adfit' objects. Use S3 class method 'pairs' instead, and see
?pairs.adfitfor help.
-
plot(<adfit>) - Plot object of class adfit
-
plot_marginals() - Plot marginal distributions for a fitted model
-
plot_Q() - Make an image plot showing the correlation (lower triangle) and sparsity (upper triangle).
-
plot_sampler_params() - Plot adaptation metrics for a fitted model.
-
plot_uncertainties() - Plot MLE vs MCMC marginal standard deviations for each parameter
-
print(<adfit>) - Print summary of adfit object
-
sample_admb() - Deprecated version of wrapper function. Use sample_nuts or sample_rwm instead.
-
sample_inits() - Function to generate random initial values from a previous fit using adnuts
-
sample_snuts() - NUTS sampling for TMB models using a sparse metric (BETA).
-
sample_sparse_tmb() - Deprecated version of sample_snuts
-
sample_tmb() - Bayesian inference of a TMB model using the no-U-turn sampler.
-
sample_tmb_hmc() - Draw MCMC samples from a model posterior using a static HMC sampler.
-
sample_tmb_nuts() - Draw MCMC samples from a model posterior using the No-U-Turn (NUTS) sampler with dual averaging.
-
sample_tmb_rwm() - [Deprecated] Draw MCMC samples from a model posterior using a Random Walk Metropolis (RWM) sampler.
-
summary(<adfit>) - Print summary of object of class adfit
-
sample_nuts()sample_rwm() - Bayesian inference of an ADMB model using the no-U-turn sampler (NUTS) or random walk Metropolis (RWM) algorithms.